publications

2023

  1. Comparing Scale Parameter Estimators for Gaussian Process Regression: Cross Validation and Maximum Likelihood
    Naslidnyk, M., Kanagawa, M., Karvonen, T., and Mahsereci, M.
    2023
  2. Emukit: A Python toolkit for decision making under uncertainty
    Paleyes, A., Mahsereci, M., and Lawrence, N.D.
    In Proceedings of the 22nd Python in Science Conference 2023

2021

  1. ProbNum: Probabilistic Numerics in Python
    Wenger, J., Krämer, N., Pförtner, M., Schmidt, J., Bosch, N., Effenberger, N., Zenn, J., Gessner, A., Karvonen, T., Briol, F-X, Mahsereci, M., and Hennig, P.
    2021
  2. Invariant Priors for Bayesian Quadrature
    Naslidnyk, M., Gonzalez, J., and Mahsereci, M.
    In Your Model is Wrong: Robustness and misspecification in probabilistic modeling Workshop, NeurIPS 2021
    Accepted as contributed talk.
  3. Dynamic Pruning of a Neural Network via Gradient Signal-to-Noise Ratio
    Siems, J.N., Klein, A., Archambeau, C., and Mahsereci, M.
    In 8th ICML Workshop on Automated Machine Learning (AutoML) 2021

2020

  1. A Fourier State Space Model for Bayesian ODE Filters
    Kersting, H., and Mahsereci, M.
    In Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, ICML 2020
  2. Active Multi-Information Source Bayesian Quadrature
    Gessner, A., Gonzalez, J., and Mahsereci, M.
    In Proceedings of The 35th Uncertainty in Artificial Intelligence Conference 22–25 jul 2020

2019

  1. Emulation of physical processes with Emukit
    Paleyes, A., Pullin, M., Mahsereci, M., Lawrence, N., and Gonzalez, J.
    In Second Workshop on Machine Learning and the Physical Sciences, NeurIPS 2019

2018

  1. On Acquisition Functions for Active Multi-Source Bayesian Quadrature
    Gessner, A., Gonzalez, J., and Mahsereci, M.
    In All of Bayesian Nonparametrics Workshop, NeurIPS 2018
  2. Probabilistic Approaches to Stochastic Optimization
    Mahsereci, M.
    2018
    PhD thesis

2017

  1. Probabilistic Line Searches for Stochastic Optimization
    Mahsereci, M., and Hennig, P.
    Journal of Machine Learning Research 2017
  2. Early Stopping Without a Validation Set
    Mahsereci, M., Balles, L., Lassner, C., and Hennig, P.
    2017
  3. Automating Stochastic Optimization with Gradient Variance Estimates
    Balles, L., Mahsereci, M., and Hennig, P.
    AutoML Workshop, ICML 2017

2015

  1. Probabilistic Line Searches for Stochastic Optimization
    Mahsereci, M., and Hennig, P.
    In Advances in Neural Information Processing Systems 28 2015
    Selected as full oral (< 1% acceptance).